Пятая революция в науке

Актуальные публикации по вопросам развития современной науки.

NEW ВОПРОСЫ НАУКИ


ВОПРОСЫ НАУКИ: новые материалы (2024)

Меню для авторов

ВОПРОСЫ НАУКИ: экспорт материалов
Скачать бесплатно! Научная работа на тему Пятая революция в науке. Аудитория: ученые, педагоги, деятели науки, работники образования, студенты (18-50). Minsk, Belarus. Research paper. Agreement.

Полезные ссылки

BIBLIOTEKA.BY Беларусь - аэрофотосъемка HIT.BY! Звёздная жизнь


Автор(ы):
Публикатор:

Опубликовано в библиотеке: 2010-01-23
Источник: www.levashov.info

Наука — это большая иерархическая система. В своём развитии она проходит несколько качественно отличающихся друг от друга уровней: факты, представления (и вытекающие из них понятия), теории, законы, научная картина мира. Фундаментом любой науки являются представления об изучаемых явлениях и объектах, полученные в результате анализа научных фактов. Система представлений о конкретном явлении формирует научную систему в виде теории. А система научных представлений на те или иные явление, связанные между собой, вытекающие одно из другого, и составляющие основу теории, формируют концепцию данной теории. Научные концепции, в свою очередь, формируют у людей мировоззрение.
* * *
Развивается наука, благодаря научному творчеству, т.е. новым открытиям и решению научных задач, которые возникают на пути развития науки. Всё это служит основой для создания научной концепции о конкретной группе явлений исследуемого мира. В итоге формируется научное мировоззрение, которое определяет, в каком направлении и в каком темпе пойдёт развитие цивилизации в целом. Оно может ускорить, а может и затормозить её развитие. Но по какому пути пойдёт развитие науки, зависит, прежде всего, от технологии решения творческих задач. Существующая ныне технология решения творческих задач в науке основана на Методе Проб и Ошибок (МПиО), который не учитывает объективных законов развития научных систем, хотя есть отечественная ТРИЗ , эвристические методы решения научных задач, не признаваемые академической наукой.
Современное состояние науки, техники, общества, экологии Земли и их анализ показывает, что развитие цивилизации зашло в тупик. Например, если взять только экологию, с 1850 по 1950 год биомасса организмов биосферы снизилась, приблизительно, на 7%. А чистая первичная продукция биосферы оценивается в 70% доисторической. По литературным источникам многим известно, что Волга была мощной и чистой рекой, где водилась самая разнообразная рыба, а теперь она превратилась в протяжённое болото. Та же участь ожидала и великую сибирскую реку — Енисей, на котором должны были построить 15 каскадов для будущих электростанций. В 1990 г. «Зелёные» г. Новосибирска (Академгородка) передали через меня народному депутату Красноярского края писателю Астафьеву В.П. карту и расчёты академика Алексеева по этому «грандиозному» проекту.
Благо с перестройкой не хватило средств на реализацию этих планов. А наука до сих пор рекомендует получать электроэнергию самым примитивным способом, тогда как был Н. Тесла с его изобретением по прямому преобразованию энергии первичных материй в электрическую. Есть новые знания и технологии, уже используемые, в частности, для восстановления озонового слоя, очистки акватория водоёмов Архангельской области и т.д. Таких примеров множество.
* * *
Основные концепции естествознания — это попытки решения научных проблем, так называемых, «научных загадок» . Ещё в 19 веке Дюбуа-Реймон и Геккель выделили семь «мировых загадок», относящихся к физике, биологии и психологии:
 Сущность материи и силы.
 Происхождение движения.
 Происхождение жизни.
 Целесообразность природы.
 Возникновение ощущения и сознания.
 Возникновение мышления и речи.
 Свобода воли.
Для разрешения этих загадок, наука, подобно трём слепцам из известной притчи, с разных позиций стала изучать природу, формируя для решения каждой задачи свою концепцию, которые, практически, не согласуются друг с другом. Изобретено огромное количество незыблемых постулатов, на которых базируются эти концепции. Нет единого представления и о развитии самой науки. Организационно сама наука превратилась в огромное количество «пирамид», где на вершине находятся корифеи, мнение которых не подвергается сомнению, поэтому на определённых этапах она приобретает атрибуты новой «религии». Всё, что не укладывается в её прокрустово ложе, считается антинаучным, дилетантизмом, ересью. Вот, что пишет по этому поводу Н.В. Левашов :
«Именно подобная «слепота» и привела к тому, что современная наука превратилась в религию, а учёные — в её священников. И подтверждением этому служат высказывания крупных учёных о том, что, для того, чтобы называть себя учёным, человек должен сохранять здоровый скептицизм и не доверять своим глазам, ушам, фактам и доказательствам, а твёрдо стоять на позициях своей науки...».
Эта ситуация временно меняется лишь в периоды, которые сама наука называет научными революциями — временем смены старых парадигм (общепринятых теорий) новыми. О самих научных революциях, их природе нет единого мнения и среди учёных.
* * *
Наука, согласно представлениям Т. Куна, в своём развитии проходит ряд периодов: допарадигмальный (когда существует несколько научных школ, несколько разных теорий об одном и том же), период нормальной науки (когда все научные школы принимают общую для всех теорию, как парадигму), период неуверенности и кризиса (когда появляются противоречащие парадигме научные факты), заканчивающийся в ряде случаев научной революцией . При этом революция в науке подчиняется следующей схеме: сначала имеет место осознание «аномалий», т.е. того факта, что «парадигма» не способна справиться с возникающими в развитии «нормальной» науки конкретными проблемами; затем для преодоления аномалий предлагаются многочисленные попытки косметического «ремонта» старой парадигмы, которые, в случае неудач, приводят к кризисной ситуации, когда аномальный факт уже невозможно объяснить с позиции старой парадигмы, и решение «задачи-головоломки» не спасает старую теорию. В итоге происходит замена старой парадигмы.
Б.М. Кедров видит причину научных революций в возникновении и преодолении противоречий, возникающих в период кризисов, причём это происходит диалектически по схеме: от единичного (например, натрий и калий – химические элементы) к особенному (натрий и калий входят в группу щелочных элементов), а затем к всеобщему (объединение групп элементов по атомному весу и включение их во всеобщую периодическую систему элементов) через преодоление познавательно-психологического барьера (ППБ) , где роль подсказки выполняет интуиция. Он же видит развитие науки через призму диалектических законов: перехода количественных изменений в качественные, отрицание отрицанием и борьбой и единством противоположностей, т.е. когда назревает диалектическое противоречие . Анализируя развитие химии, В.А. Кузнецов , выделил четыре этапа в развитии представлений об изучаемом объекте в химии: изучение состава вещества, как определяющего его свойства, затем его структуры, проявляющей разные свойства при одном и том же составе; поведения, т.е. динамики у молекул вещества, и, наконец, саморазвития, эволюции молекул.
Анализ развития научных систем показывает, что они развиваются через возникновение и разрешения научных противоречий в научных системах .
Как уже отмечалось, формирование мировоззрения происходит через формирование представлений о том или ином явлении и предмете на основании фактов, полученных из наблюдений или экспериментов. Казалось бы, анализ путей развития науки даёт некоторые представления о некоторых закономерностях развития самой науки, и, естественно, должно сказываться на мировоззрении тех, кто относится к когорте учёных. Однако каждый раз, когда возникает критическая ситуация, носители «старой» концепции бросаются на спасении её любыми способами, но не на разрешение возникших противоречий или отказа от неё в силу их неустранимости в её недрах. В итоге, кризис заканчивается новой научной революцией.
Сегодня это представление не вызывает особого спора. Каждая новая теория, парадигма которой привела к научной революции, базируется на основах, до определённого момента считающихся незыблемыми. Однако, как правило, факт свершения научной революции констатируется уже после того, когда она произошла. До этого момента представители «старой теории» отчаянно сопротивляются каким-либо её изменениям. Отчасти это связано с отсутствием чёткой научной методологии, чёткого представления о том, по каким законам развивается наука, как происходит само познание. Отсюда и представления о том, что данная теория и есть истина в последней инстанции. И, наконец, с тем, что при данной «старой теории» получены все научные регалии, почёт и уважение. Стоит ли разрушать это?
В зависимости от степени влияния на науку в целом, научные революции могут быть локальными, когда влияние новой парадигмы распространяется на представления в пределах одного научного направления, и глобальными, когда меняется мировоззрение во всех областях человеческого познания.
* * *
Почему наука развивается так неравномерно и не цельно? Её развитие напоминает сумму умозаключений тех трёх слепых философов из известной причти, которые пытаются по ощущениям «определить, что такое слон?»…
На эти и другие вопросы достаточно чётко и убедительно даны ответы в книге «Неоднородная Вселенная» (см. Предисловие и Аналитический обзор) её автором — Н.В. Левашовым. Им философски осмыслена ситуация, сложившаяся в науке к концу ХХ века, и показана значимость онтологии (учение о фундаментальных принципах бытия) физических процессов для философской и научной мысли человечества. Именно с этой точки зрения попробуем осмыслить и мы развитие научной мысли, но уже с учётом концепции автора книги.
В начале первой главы автор обращается к Славяно-Арийским Ведам, через которые наши предки пытались донести до нас в художественной форме знания о мироздании, которыми владели они, и которые сейчас в развёрнутом виде на современном языке доносит до нас автор.
Наш мир условно можно разделить на три уровня: макромир — космос (Вселенная), мезомир — срединный мир и микромир. Соответственно и познание шло тремя путями: «ВНИЗ» в микромир (микрокосмос), т.е. вглубь материи и «ВВЕРХ» — на макроуровень, в макрокосмос, и на мезоуровне (в срединном мире). Человек же сам оставался в срединном мире, где он мог что-то измерить, пощупать, рассмотреть и т.д. с помощью своих органов чувств. Для познания на других уровнях ему потребовалось изобретать соответствующие инструменты и приборы, усиливающие часть его возможностей. Каждый свой шаг по пути познания он делал, используя самую примитивную технологию решения творческих задач — технологию метода проб и ошибок, постепенно складывая мозаичную картину окружающего мира. Отсюда и представления об избранности тех, кому повезло сделать открытие или изобретение, особом даре, таланте и индивидуальности путей познания истины. Однако в ХХ веке было показано, что это не совсем так, хотя талант, способности необходимы, но и они не даются раз и навсегда, их также нужно развивать по мере познания окружающего мира. В результате анализа различных научных систем установлено, что наука развивается по объективным законам, которые можно познать и использовать для планомерного развития научных систем, без надежд на озарение или осенение. , ,
При этом то, что человек не смог сам наблюдать, измерить, ощутить, ему приходилось компенсировать своими мысленными опытами по созданию виртуальных моделей объектов исследования. Причём подход к проблеме познания у разных народов складывался по-разному.
Например, если европейские народы приучили понимать развитие через возникновение и разрешение диалектических противоречий, то для азиатских народов (в частности, китайцев) мышление строится на основе компромиссов и совместимости противоположностей. Мне четыре часа пришлось объяснять двум китайским докторам наук, как я решил для них (по договору) задачу об электролизёре для получения алюминия. Они не понимали, как могут одновременно сочетаться требования к электроду: он должен быть длинным, чтобы нормально шёл процесс и коротким, потому что он сгорает…
В период господства натурфилософского мировоззрения учёные древности, с одной стороны, пытались найти «первокирпичики» вселенной (её «состав») — простейшие начала («стихии»), из которых она состоит. Иначе говоря, они пытались установить первопричину, первооснову, которая могла бы объяснить всё бесконечное многообразие природных явлений. Г. Эфесский предлагал в качестве первоначала огонь, который обменивается на всё и всё обменивается на огонь. Ф. Милетский таким элементом считал воду, ученик Фалеса Анаксимен признавал за основу воздух. Другой ученик Фалеса считал таким первовеществом «апейрон». Пифагор считал, что мир состоит из пяти элементов (земли, огня, воздуха, воды и эфира), которые он увязал с пятью видами правильных многоугольников с тем или иным числом граней. Он рассматривал Вселенную, как гармонию чисел и их отношений. Итогом развития этих взглядов стало учение Эмпедокла, согласно которому природа признаётся самостоятельно существующей, вечной, первоосновой которой являются четыре элемента: земля, вода, воздух и огонь. Но вскоре новой натурфилософской идеологией анатомизма стало атомистическое учение Демокрита, согласно которому:
1. Вся Вселенная состоит из мельчайших материальных частиц — атомов и незаполненного пространства — пустоты. Наличие последней является обязательным условием для осуществления перемещения атомов в пространстве.
2. Атомы неуничтожимы, вечны, а потому и вся Вселенная, из них состоящая, существует вечно.
3. Атомы представляют собой мельчайшие, неизменные, непроницаемые и абсолютно неделимые частицы — последние, образно говоря, представляют собой «кирпичики мироздания».
4. Атомы находятся в постоянном движении, изменяют своё положение в пространстве.
5. Различаются атомы по форме и величине. Но все они настолько малы, что недоступны для восприятия органами человека.
С другой стороны учёные пытались найти и объяснить устройство самой Вселенной и механизмы её работы на макроуровне. Обычно путём накопления фактов в разных областях знания и их анализа строится конкретная модель, которая, переносится на сам мир.
Аристотелю Вселенная представлялась чем-то незыблемым, в которой неподвижный «перводвигатель» приводил её в движение. В центре Вселенной находилась Земля, вокруг которой вращалось всё остальное — планеты, Солнце, небесная твердь с неподвижными звёздами. Птолемей считал, что в центре мироздания находится наша Земля, вокруг которой вращаются все планеты и само солнце. Эти представления были незыблемыми вплоть до 15 века. Однако для практических расчётов она была неудобна, хотя с математической точки зрения — безупречна. Вот, кстати, пример того, что математика безотносительна к природе описываемого явления и является только инструментом…
Для чисто практических нужд нужно было, в частности, уточнить дни весеннего и зимнего равноденствия. Результатом решения этой проблемы Н. Коперником стала Первая Научная Революция, приведшая к крушению геоцентрической (с Землей в центре мира) системы мира Птолемея, которая господствовала 1375 лет, и формированию представлений о гелиоцентрической (с Солнцем в центре мира) системе мира. Н. Коперник в своём труде «Об обращении небесных сфер» (опубликованном 1543 г.) обосновал и доказал истинное положение Солнца в солнечной системе. Он видел модель нашего мира на основе строения нашей солнечной системы: в центре Солнце, вокруг вращаются планеты, а выше небесная твердь со звёздами. Пытаясь понять устройство Вселенной, Н. Коперник выдвинул ряд положений . А последователь Н. Коперника Дж. Бруно высказал идею о множественности миров. Эти представления основательно поколебали мировоззрение не только учёных, но и обычных людей и стали основой новой модели мироустройства. С методологической точки зрения на этом этапе познания шёл поиск непротиворечивой структуры мира (системы) при данном его составе. Импульсом к новой научной революции не обязательно должен быть факт решения какой-либо глобальной проблемы или «изобретение» новой теории. Чаще случается наоборот: решается внешне незначительная задача или проблема, которая и приводит к ломке старых представлений или к научной революции и не только локальной, но и глобальной…
После первой научной революции мир представлялся системой с достаточно «жёсткой» структурой из частично подвижных элементов с конкретным составом.
Дальнейшие открытия учёных (Галилей — принцип инерции, свободное падение тел и т.д.; Кеплер — три закона движения планет вокруг Солнца, теории лунных и солнечных затмений, астрономические исследования; Декарт — основы аналитической геометрии, введение осей координат, формулирование понятие переменной величины, теория вихрей и др.; Ньютон — законы механики, основы теоретической физики, дифференциальное исчисление и т.д.), положившие начало созданию классической механики и экспериментального естествознания, привели ко Второй Научной Революции.
Была сформирована механистическая картина мира, в которой мир представлялся огромным «механизмом», подчиняющимся законам механики. Идеи Ньютона, опиравшиеся на математическую физику и эксперимент, определили направление дальнейшего развития естественных наук. Развитие и успехи математики создали впечатление, что «королева наук» может дать ответы на многие вопросы и открыть истину на «кончике пера»… О том, что математика всего лишь инструмент и была призвана «препарировать» (как нож и вилка для блюда) выявленные любым способом отношения между параметрами системы так, чтобы можно было разобраться в них. Но ничего о самой природе исследуемого объекта математика, к сожалению, сказать не может, т.к. это не её назначение.
В целом в области познания были выделены два подхода: метафизический — когда явления рассматриваются независимо друг от друга; диалектический — когда всё рассматривается во взаимосвязи, с учётом реальных процессов их изменения, развития… В самой же математике появились переменные величины, давшие толчок к ее развитию.
С мировоззренческой точки зрения после второй научной революции МИР, в представлениях учёных, стал подвижным, изменяемым, развивающимся. В целом же мир представлялся однородным, детерминированным (закономерным и предсказуемым) с достаточно ещё жёсткой структурой в виде механистической картины Ньютона.
В 18 веке с публикацией труда И. Канта «Всеобщая естественная история и теория неба» начинается Третья Научная Революция, характеризующаяся диалектизацией естествознания: объекты исследования рассматриваются в развитии, т.е. адаптации их к конкретным условиям (пытаются выяснить и ответить на вопрос: почему объект был таким-то, а потом стал другим).
В этот период появились: космогоническая гипотеза Лапласа о зарождении планет из облака газа; «Философия зоологии» Ламарка, который видел в изменении внешних условий, как упражнения для органов, причину изменчивости видов; «Происхождение видов» Ч. Дарвина, который изменчивость, эволюцию видов объяснил естественным отбором; утверждение Шлейдена, считавшего, что все растения состоят из клеток; открытие закона сохранения энергии и вещества М.В. Ломоносовым в 1748 г., затем Майером в 1841 г, Гельмгольцем в 1847 г., англичанами Джоулем и Гровом — в 1843 г., а также датским инженером Кольдингом; исследования в области электромагнитного поля Кулона, Фарадея, Максвелла, Герца и др. наконец, открытие Д.И. Менделеевым в 1869 г. (17.02 по н.с.) периодического закона элементов и другие. Эти открытия означали начало крушения механистической картины мира.
* * *
Например, к концу 19 века в физике были установлены два закона, описывающие распределение энергии по спектру света: это закон Вина для коротких волн, и закон Рэлея для длинных волн. Если применить закон Вина для всего спектра, то для длинных волн он расходится с кривой распределения, построенной по данным опыта. Если же привлечь закон Релея, то он не совпадет с реальной кривой в короткой части спектра. Итак, возникает Научное Противоречие (НП): если объясним часть спектра (длинную или короткую) одними представлениями, вытекающими их одних экспериментов, не объясним весь спектр (интенсивность излучения), и, наоборот. Противоречие удалось устранить с введением гипотезы Планка о дискретном характере излучения света, т.е. в виде отдельных частиц - квантов.
* * *
Проникновением в глубь материи (открытие Беккерелем самопроизвольного излучения солей урана, открытие радиоактивности П. Кюри и М. Кюри, создание модели атома Резерфордом, Н. Бором и его аспирантом, открытие Содди превращения элементов друг в друга, открытие А.Г. Столетовым фотоэффекта, Томсоном — электронов, Луи де-Бройлем — волновых свойств у всех материальных частиц и др.) характеризуется Четвёртая Научная Революция в естествознании.
В представлениях учёных мир стал более динамичным, подвижным и изменяемым, но ответы на все загадки природы так и не были получены.
В начале ХХ века и в течение его наука всё чаще стала сталкиваться с неразрешимыми для неё противоречиями. Кризис идей коснулся практически всех отраслей науки. Хотя бы в общем виде рассмотрим несколько примеров возникших противоречий:
Физика: в результате взаимодействия элементарных частиц массами m1 и m2 конечный продукт по массе значительно больше суммы исходных масс — нарушение закона сохранения материи.
Биология: теория эволюции жизни — отсутствие промежуточных звеньев между человеком разумным и неандертальцами: человек, как представитель приматов, должен быть генетически совместим с неандертальцем, чтобы быть продолжателем его генетики, но он несовместим с неандертальцем генетически, т.к. это показывают исследование артефактов.
Область сознания: по современным представлениям человек в состоянии клинической смерти — это мёртвый человек, поэтому он ничего не должен видеть и слышать, т.к. глаза его закрыты и мозг отключён. Но люди, пережившие состояние клинической смерти, рассказывают, что они видели своё тело и слышали, что говорили врачи над их телом, и, что происходило в соседних помещениях, что затем подтверждалось, следовательно, человек и умер, и не умер…
История: новые артефакты никак не вписываются в официальную концепцию истории (трактовка всегда даётся с позиций тех, кто у власти). Чтобы они вписались, прежняя история должна быть иной.
Происхождение жизни, гистология: после оплодотворения из одной клетки путём деления на идентичные клетки вырастает сложный организм. Это факт. Но, чтобы появился сложный организм, клетки при делении должны давать всё многообразие клеток, которые будут в будущем организме, но деление клеток приводит к появлению абсолютно идентичных клеток.
Паранормальные явления: их фиксируют, их наблюдают, они есть, но они не вписываются в существующие научные концепции, следовательно, концепции нужно менять, но официальная наука предпочитает их игнорировать или объяснить шарлатанством.
И т.д.
Учёных всегда интересовали вопросы: как устроен мир и почему он устроен именно так. С точки зрения теории познания (гносеологии) можно выделить два пути познания мира:
1. Опираясь на чувственное восприятие мира, как на предшествующий опыт, определить систему понятий и принципов, на которых можно было построить концепцию устройства мира, а затем искать её подтверждение опытом; Например, А.Эйнштейн при создании теории относительности каждые две минуты выдвигал новую идею, анализировал и потом отбрасывал ее. Это типичный ненаучный подход, т.е. метод проб и ошибок (МПиО).
2. Опираясь на физические опыты, искать тождественные им представления, понятия и принципы, на основе которых можно было бы строить адекватную (соответствующую) действительности модель мира.
Но возможен и третий путь познания: понимание реального мира, как проявление идеи, понятия, духа или тождество бытия и мышления, т.е., как развивающийся процесс самопознания абсолютной идеей самой себя (Гегель). Применение этих подходов давали свои результаты в плане развития наших представлений о мире. В ХХ веке наука выработала для себя ряд «фундаментальных» положений, на которых строилось её здание в период четвёртой научной революции. Но на каких таких «китах» стоит современная наука естествознания?
«Основными “китами”, — как отмечает в своей книге Н.В.Левашов, — можно назвать несколько постулатов современной науки: постулат сохранения материи, постулат однородности вселенной и постулат скорости света» .
Попытки Эйнштейна решить ряд накопившихся проблем в физике, ни в его специальной теории относительности (СТО, в 1905 г.), ни в его общей теории относительности (ОТО в 1916 г.) не увенчались успехом, и самое важное, они не получили экспериментального подтверждения. Популярной в последние десятилетия ХХ века стала теория Большого Взрыва, являющаяся частным случаем решения А. Фридманом (в 1926 г.) уравнений ОТО, при ряде допущений. Но ни одного эксперимента, подтвердившего истинность ОТО, нет до сих пор. Попытки привязать сюда опыты Эддингтона по наблюдению отклонения лучей света, идущих от звёзд и проходящих во время солнечных затмений рядом с солнечным диском, подтверждает только обратное, что постулаты Эйнштейна не верны, и допустимая ошибка, вытекающая из ОТО, значительно превышает значения, полученные в эксперименте. Разбегание галактик, согласно формуле Хаббла, показывает, что, чем дальше от нас звезда, тем больше скорость разбегания. Причем все звезды «бегут» от нас, как от центра Вселенной, что противоречит другим наблюдениям. Не увенчалась успехом и попытка Эйнштейна вплоть до 1955 г. создать единую теорию поля, объединяющую тяготение, электричество и магнетизм. Не были успешными и попытки других учёных решить последнюю проблему (Гейзенберг, Салам и др.). Физика оказалась в полнейшем тупике.
Если методологически рассмотреть развитие представлений о материальном мире, то можно отметить следующее.
Вначале человек познавал вещественный окружающий мир, модель которого ему представлялась в виде вещества, состоящего из первоосновы в виде однородных элементов «воды», «огня», «воздуха», «земли» и т.д. Затем философы придумали модель вещества, первоосновой которого было однородное «первовещество» — «апейрон». Далее была придумана более логичная модель вещества, состоящая из однородных неделимых частиц — атомов разной формы и разного размера, т.е. однородных, но со сдвинутыми геометрическими характеристиками. Вскоре оказалось, что атомы образуют однородные и неоднородные молекулы, как из одинаковых атомов, так и из разных, т.е. атомы разных элементов имеют сдвинутые физические характеристики относительно однородных молекул.
На первом этапе развития науки на основе наблюдений формируются представления о том, что такое Космос, мир, атом, т.е. об их «составе» или компонентах: мир — это Земля, вращающиеся вокруг неё планеты, Солнце и небесная твердь с неподвижными звёздами. На начальных этапах познания компоненты мира, как правило, жёсткие однородные образования, связанные между собой жёсткими связями. Постепенно эти связи заменяют на подвижные, динамичные, изменяющиеся во времени и пространстве. Сами объекты исследования постепенно приобретают признаки неоднородности их форм, анизотропности (атомы имеют разную форму, при соединении образуют разные вещества). Затем идёт формирование представлений о структуре мира: Земля — центр Вселенной и все вращается вокруг нее; Солнце в центре и вокруг него вращаются планеты и сама Земля, а также небесная твердь; мир состоит из множества миров похожих на наш. Наконец, мир — это Вселенная, где всё находится в движении, т.е. объект познания становится динамичным и адаптивным к конкретным условиям. С проникновением «вглубь» объекта, выясняется, что он значительно усложняется за счёт выявления ряда подсистем и, в то же время, идеализируется, за счёт замещения и выполнения подсистемами по совместительству ряда функций, в силу наличия у них соответствующих совместимых друг с другом качеств и свойств. При этом степень неоднородности объектов исследования по всем качествам и свойствам возрастает, а сам объект эволюционирует во времени и пространстве. Примером тому служит развитие представлений об атоме, начиная от представлений Демокрита до современных.
* * *
1. Поиск состава системы (атома). Модель атома Демокрита: жёсткая, неделимая частица. Многообразие таких частиц дает многообразие веществ.
2. Поиск состава системы (атома). Модель атома (интуитивная догадка) Проф. Алексеева: атом устроен по принципу солнечной системы (нач. 19 в.).
3. Этап поиска состава атома и возможной его структуры. Статическая модель атома Дж. Томсона и У. Кельвина (1902 г.). «Жёсткая» система: сфера, в которую вкраплены положительные и отрицательные заряды. Система однородна и разделена на систему и антисистему: положительные и отрицательные частицы равны и компенсируют друг друга.
4. Этап поиска состава и структуры. Модель атома Ленарда (1903 г.). «Жёсткая» система раздроблена на части — динамиды — объединения из электрона и массивного положительно заряженного тела. От однородной системы перешли к неоднородной, состоящей из системы и антисистемы: массивное положительно заряженное тело и маленькая частица — электрон.
5. Этап поиска структуры при данном составе системы. Статическая модель атома Ж. Перрена (1901 г.) и Х. Нагаока (1904 г.). «Жёсткая» структура: вокруг положительно заряженного ядра, подобно планетам вокруг солнца, распределены неподвижные электроны; при колебании они излучают. Получена неоднородная система.
6. Этап адаптации элементов системы (состава) к конкретным условиям и динамизации её частей. Модель атома Резерфорда (1911 г.) — найдена наиболее эффективная при данном составе структура, введены элементы динамики; вращающиеся электроны адаптированы к кулоновскому воздействию ядра: вокруг заряженного ядра вращаются электроны, кулоновское притяжение которых компенсируется центробежными силами, но, в соответствии с классическими представлениями, которые рассматривали процесс излучения и поглощения, как непрерывный волновой процесс, атом должен постоянно излучать энергию (по Максвеллу), т.е. вращающийся вокруг ядра электрон должен через некоторое время упасть на него. Но опыт показывает, что атом устойчив. Сохранена неоднородная система.
7. Этап адаптации структуры системы к конкретным условиям и динамизация её частей. Квантовая модель атома Н. Бора и его аспиранта (1913 г.) — найдена непротиворечивая структура с разрешенными орбитами электронов при данном составе атома. В результате найдено объяснение стабильности атома: электроны вращаются по стационарным квантованным орбитам; переход с одной на другую сопровождается излучением. Сохранена неоднородная система, но в пространстве вокруг ядра появились зоны (орбиты) с особыми свойствами — неоднородностью качеств.
8. Завершение этапа адаптации структуры и состава к конкретным условиям. Современная модель атома — предложена адаптивная система: электроны вращаются по орбиталям, имея несколько квантовых чисел. Закреплена неоднородность системы.
* * *
Анализируя развитие представлений об атоме, можно выявить простой алгоритм, по которому в общем виде происходит развитие научных представлений:
1. Определяется состав исследуемого объекта и на его основе подбирается логически непротиворечивая структура системы и динамика поведения (развитие). Ищется ответ на вопрос: из чего состоит объект исследования?
2. После определения состава объекта, идёт процесс поиска адекватной ему структуры, что заканчивается формированием концепции о его структуре. Ищется ответ на вопрос: как устроен объект исследования?
3. Выявляются правила гармонии системы, её устройства и функционирования. Выявляется механизм адаптации (гармонии) системы и её динамика. Ищут ответы на вопросы: Как происходит функционирование (работа) системы с данной структурой и данным составом, по каким правилам и с какой динамикой? Что заставляет её быть такой? Почему именно так?
4. Наконец выявляют пути эволюции системы. Ищут ответы на вопросы: Как развивается система и что ею движет? Почему одна система сменяет другую? Какова цель этого развития? Кому это нужно?
* * *
На этом заканчивается развитие классической концепции, идущей по пути «дробления» объекта исследования, в частности, электрона, когда для описания его поведения в атоме придумывали массу квантовых чисел, а также моделей самого электрона, например, кварковую с множеством новых квантовых чисел, вводя для их характеристики и несовместимые для микромира понятия — «цвет», «запах», «очарованность» и т.д. Концепция зашла в тупик, и физики «запутались» в количестве открытых ими же частиц, которые не укладываются ни в какие их теории. Это — кризисная ситуация, предвестник грядущей глобальной научной революции. Здесь можно провести черту, разделяющую историю человечества на две эпохи: как подготовительный этап в познании и начало эры новых знаний.
* * *
Впервые проблему единства мира методологически правильно понял и решил русский учёный Н.В. Левашов, который в своём фундаментальном труде «Неоднородная Вселенная» снял все «задачи-головоломки», не дававшие покоя многим поколениям учёных. Он пишет: «Законы природы формируются на уровне макрокосмоса и микрокосмоса. Человек, как живое существо, существует, в так называемом, промежуточном мире — между макро- и микромиром. И в этом промежуточном мире человеку приходится сталкиваться только с проявлением законов природы, а не с ними непосредственно. Как следствие этого, возникает проблема с созданием полноценной картины мироздания» .

Новые статьи на library.by:
ВОПРОСЫ НАУКИ:
Комментируем публикацию: Пятая революция в науке

© Игорь Кондраков () Источник: www.levashov.info

Искать похожие?

LIBRARY.BY+ЛибмонстрЯндексGoogle
подняться наверх ↑

ПАРТНЁРЫ БИБЛИОТЕКИ рекомендуем!

подняться наверх ↑

ОБРАТНО В РУБРИКУ?

ВОПРОСЫ НАУКИ НА LIBRARY.BY

Уважаемый читатель! Подписывайтесь на LIBRARY.BY в VKновости, VKтрансляция и Одноклассниках, чтобы быстро узнавать о событиях онлайн библиотеки.